Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent
نویسندگان
چکیده
We report the synthesis and characterization of a novel carbon nanostructure-based magnetic resonance imaging contrast agent (MRI CA); graphene nanoplatelets intercalated with manganese (Mn(2+)) ions, functionalized with dextran (GNP-Dex); and the in vitro assessment of its essential preclinical physicochemical properties: osmolality, viscosity, partition coefficient, protein binding, thermostability, histamine release, and relaxivity. The results indicate that, at concentrations between 0.1 and 100.0 mg/mL, the GNP-Dex formulations are hydrophilic, highly soluble, and stable in deionized water, as well as iso-osmolar (upon addition of mannitol) and iso-viscous to blood. At potential steady-state equilibrium concentrations in blood (0.1-10.0 mg/mL), the thermostability, protein-binding, and histamine-release studies indicate that the GNP-Dex formulations are thermally stable (with no Mn(2+) ion dissociation), do not allow non-specific protein adsorption, and elicit negligible allergic response. The r 1 relaxivity of GNP-Dex was 92 mM(-1)s(-1) (per-Mn(2+) ion, 22 MHz proton Larmor frequency); ~20- to 30-fold greater than that of clinical gadolinium (Gd(3+))- and Mn(2+)-based MRI CAs. The results open avenues for preclinical in vivo safety and efficacy studies with GNP-Dex toward its development as a clinical MRI CA.
منابع مشابه
Synthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging
Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملSynthesis and biological evaluation of a novel Glucosylated Derivative of Gadolinium Diethylenetriaminepentaacetic acid for Tumor Magnetic Resonance Imaging
Cancer detection in early stage using a powerful and noninvasive tool is of high global interest. In this experiment, a small-molecular-weight glucose based derivative of Gd3+-1-(4-isothiocyanatobenzyl) diethylene tri amine penta acetic acid (Gd3+-p-SCN-Bn‐DTPA‐DG) as a novel potential MR imaging contrast agents was synthesized. Gd3+-p-SCN-Bn‐DTPA‐DG was synthesized with reacting of Glucosamine...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملA Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging
Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...
متن کامل